

Fig. 1. Film thickness ratio for two immiscible falling films in laminar flow.

$$G_2 = 1 + 3\varphi/m + 3r\varphi^2/m \tag{11}$$

The mass flow rates per unit width, $\Gamma = \overline{v} \, \delta \rho$, are

$$\Gamma_i = \frac{\rho_i^2 g_y \delta_i^3}{3\mu_i} G_i \tag{12}$$

and the ratio of the film thickness from Equations (10), (11), and (12) is given by

$$\varphi^3 + 1.5 \left[(m\gamma)^{2/3} \ r^{-7/3} - \gamma r^{-1} \right] \varphi^2$$

$$-3 \ r^{-2} \varphi - (m\gamma) r^{-2} = 0 \quad (13)$$

Thus, the film thickness ratio is a function of the ratios of densities, viscosities, and mass flow rates but not of the gravitational force.

Equation (13) was solved numerically, using a digital computer, for a number of combinations of physical properties and flow rates. The results are shown in Figure 1. For given mass flow rates, the ratio of the film thicknesses passes through a maximum at a given density ratio. The viscosity ratio contribution reverses with increased density ratio.

Figure 1 or Equation (13) may be used to determine the average velocities or the mass flow rates from Equations (9) to (12). On the other hand, if the mass flow rates are known, one can calculate the individual film thicknesses and the average velocities. In addition to the above assumptions, the analysis neglects the effects of surface tension.

This analysis was developed in conjunction with a study of film-by-film condensation of immiscible liquids. The subsequent heat transfer treatment parallels that of Nusselt.

ACKNOWLEDGMENT

The Computer Science Center at the University of Maryland provided digital machine time supported in part by the National Aeronautics and Space Administration.

NOTATION

 $g_y = gravitational force in y direction$

 G_i = correction in Equation (9) for component i

 $n = \mu_1/\mu_2$, viscosity ratio

 $r = \rho_1/\rho_2$, density ratio

 v_i = velocity of component i

x = distance away from wall

Greek Letters

 δ_i = film thickness component i

 $\gamma = \Gamma_1/\Gamma_2$, ratio of mass flow rates

 Γ_1 = mass flow rate per unit width for component i

 $\varphi = \delta_1/\delta_2$, film thickness ratio

 ρ_i = density of component *i*

 μ_i = viscosity of component i

Free Volume Theory for Self-Diffusivity of Simple Nonpolar Liquids

M. J. THAM and K. E. GUBBINS

University of Florida, Gainesville, Florida

In a recent paper (1), hereafter referred to as I, it has been shown that the Macedo-Litovitz equation (2),

$$\eta = A_o T^{\frac{1}{2}} \exp\left(\frac{V_o}{V - V_o}\right) \exp\left(\frac{E_v}{RT}\right)$$
(1)

provides a good description of the effects of temperature and pressure on liquid viscosity of simple liquids for $\rho \geq 2\rho_c$, provided that the temperature dependence of V_o and the density dependence of E_v are accounted for. By arguments analogous to those of Macedo and Litovitz, a similar equation may be written for the self-diffusion coefficient,

$$D = B_o T^{1/2} \exp\left(-\frac{V_o(T)}{V - V_o(T)}\right) \exp\left(-\frac{E_v(V)}{RT}\right)$$
 (2)

In this paper we test Equation (2) for liquids composed of monatomic and quasispherical polyatomic molecules. According to Equations (1) and (2), V_o and E_v should be the same for viscosity and self-diffusion coefficient at a particular temperature and density. The quantity V_o was therefore obtained from Equations (3), (4), and (5a) of paper I (assuming n = 12 in the 6, n potential), and E_v was obtained from curve A of Figure 4 in paper I. The remaining parameter B_o was evaluated by comparing experimental data with Equation (2), using the computer.

Tables 1 and 2 show the data sources and parameters for the fluids studied, while Figure 1 illustrates the agreement for methane. Values of ϵ/k , T_m , V_m and V_c used were those of table 2 in paper I. Unfortunately no

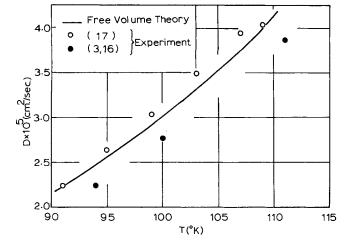


Fig. 1. Test of free volume theory for self-diffusion coefficient of saturated liquid methane.

measurements of self-diffusivity seem to have been made at constant volume, and there appears to be no data for simple fluids at high pressure. Naghizadeh and Rice (3) report data for the inert gas liquids for pressures above atmospheric, but the pressure range covered is not sufficient for a significant change in density to occur. Most of the data tested in Table 2 are thus for saturated liquids.

ACKNOWLEDGMENT

Financial assistance for part of this work by the National Science Foundation is gratefully acknowledged. Computing facilities were provided by the University of Florida Computing

NOTATION

 A_o = pre-exponential factor in viscosity equation

pre-exponential factor in self-diffusivity equation B_o

= self-diffusion coefficient D

 E_v = activation energy per mole

k = Boltzmann constant M = molecular weight

= repulsion exponent in (6, n) potential n

R = gas constant T = temperature

 T_m = melting temperature

V= molal volume V_c = critical volume V_m = melting volume

 V_o minimum free volume per mole needed for

molecular flow to occur

value of V_o when $kT/\epsilon = 1$

TABLE 1. DATA SOURCES AND RANGE OF CONDITIONS

Molecule	Temperature range (°K.)	Molal volume range (cc. mole ⁻¹)	Density reference	Self-Diffusivity reference	Number of points
Ar	85-110	28-31	8, 9	3, 14	16
Kr	110-160	33-41	10	3	8
Xe	168-208	43-48	10, 11	3	12
CO	69-78	33-35	10, 12	15	4
CH_4	91-145	35-43	10, 12	3, 16, 17	10
CF_4	88-123	45-52	13	17	10

The average percentage errors of about 15% shown in Table 2 are substantially larger than those for viscosity. However, the data for self-diffusion coefficients of simple liquids are of relatively low accuracy, and discrepancies between different workers in excess of this figure are common (3, 4). The theories of Eyring (5), Weymann (6), and Cohen and Turnbull (7) give explicit expressions for B_o , and suggest that the group $(B_oM^{1/2}/V_m^{1/3})$ may be approximately the same for different molecules. Table 2 indicates some fluctuation for this group. However the method of fitting B_o was not highly sensitive, because of the small range of density and temperature over which D values have been measured. This behavior is similar to that observed for A_0 in the viscosity equation (1). The factors A_o and B_o may be obtained from a single measurement of viscosity and self-diffusion coefficient respectively, and Equations (1) and (2) then used to predict the transport coefficients at other temperatures and pressures.

TABLE 2. PARAMETERS FOR MOLECULES STUDIED

Mole- cule	$V_o{}^1$ (cc. mole $^{-1}$)	$10^5 B_o$ (sq. cm. sec. $^{-1}$ °K. $^{-1/2}$)	$\frac{B_o M^{1/2}}{V_m^{1/3}} \cdot 10^5$	Average % Error
Ar	15.50	1.83	3.81	15.3
Kr	19.02	1.39	3.92	17.8
Xe	24.55	1.66	5.41	14.3
CO	18.34	3.14	5.17	5.9
CH_4	19.5	2.91	3.55	9.0
CF ₄	25.2	0.50	1.31	12.9

= energy parameter in (6, n) potential

η = viscosity

= density

= critical density

LITERATURE CITED

1. Gubbins, K. E., and M. J. Tham, AIChE J., 15, 264 (1969).

2. Macedo, P. B., and T. A. Litovitz, J. Chem. Phys., 42, 245

3. Naghizadeh, J., and S. A. Rice, ibid., 36, 2710 (1962).

4. Yen, W. M. and R. E. Norberg, Phys. Rev., 131, 269 (1963).

5. Glasstone, S., K. J. Laidler, and H. Eyring, "The Theory of Rate Processes," Chapt. 9, McGraw-Hill, New York (1941).

Weymann, H., Kolloide Zeit., 138, 41 (1954)

7. Cohen, M. H., and D. Turnbull, J. Chem. Phys., 31, 1164

8. Zhdanova, N. F., Soviet Phys. JETP., 4, 749 (1957).

Van Itterbeek, A., O. Verbeke, and K. Staes, Physica, 29, 742 (1963).

10. Boon, J. P., J. C. Legros, and G. Thomaes, ibid., 33, 547 (1967).

Reynes, E. G., and G. Thodos, *ibid.*, 30, 1529 (1964).
 Johnson, V. J., *WADD Tech. Rept.* 60-56, Wright-Patterson Air Force Base, Ohio (1960).

13. Reed, T. M., "Fluorine Chemistry," J. H. Simons, ed., Vol.

5, Chapt. 2, Academic Press, New York (1963). 14. Corbett, J. W., and J. H. Wang, J. Chem. Phys., 25, 422 (1956).

15. Cini-Castagnoli, G., *Physica*, 30, 953 (1964).

Gaven, J. V., J. S. Waugh, and W. H. Stockmayer, J. Chem. Phys., 38, 287 (1963).

17. Rugheimer, J. H., and P. S. Hubbard, ibid., 39, 552 (1963).